
X. トレーニング負荷および計画の評価

1. トレーニング負荷と超回復

2. トレーニング評価に必要な視点(パラメーター)

(1) トレーニング内容の定量化(見える化)

- 1) 運動の種類(手段)と方法
 - →個別エクササイズの運動認識と、それらの関係性(連続/断続など)
- 2) 負荷(強度、量)
 - →運動エクササイズで用いる負荷の大きさ(強度、量)、トレーニング時間などの測定
- 3) 特異性(一般的、専門的, 試合的)
 - →エクササイズ (手段)、方法、負荷の組み合わせから判断

表 10-1 トレーニング負荷(強度、量、質)に関する定量的なデータ

トレーニング負荷	例
強度	単位時間あたりのトレーニング量(タイム、速度、1回量など)
12/2	エネルギー供給機構の動員性(ATP-PC 系、解糖系、酸化系など)
	動作速度
	動作頻度
	所要時間(例えば、走時間)
	幅や高さ
	荷重(重量)
	強度の範囲もしくは段階
	ゲームもしくは格闘のテンポ
	例)1 本あたりの距離、タイム(速度)など
量	特定の時間内に遂行された数(回数、距離、総重量など)
	距離あるいは部分距離の長さ
	反復やセット, サーキット, トレーニングユニットなどの数量
	トレーニング負荷やトレーニングユニットの持続時間
	実現する重量の合計数(例えば、パワースポーツでのトン単位)
	例)反復回数、走距離など
質	トレーニングの「質」的強度
	目的との適合度(分習/全習的、競技会的)や周辺要因(体調、環境)
	例)スタート姿勢、走路面、スパイクの有無、
	反復方法 (レペティション、インターバル、持続など)

(2) 最大負荷

「最大負荷」は、身体の適応能力の限界を超える負荷であってはならない。経験則で、競技種目別、個人別の「限界負荷量」を理解しておく必要がある。方法としては、トレーニング負荷の変化に伴うパフォーマンスおよびコンディションの変化を十分に理解しておく。

トレーニング計画, すなわり, トレーニング負荷を構成する際には, まず長期トレーニングの総負荷量を考慮し, トレーニングのねらいに即して, 適切に配分していく必要がある.

表 10-2 個人トレーニングに取り入れられた限界負荷量

		期間別にみた負荷量の限界					
競技種目と負荷の単位	24時間未満	1週間未満	1ヵ月未満	1年未満			
反復運動種目							
自転車競技 (km)	830.3	1,600	(5,700)	(60,000)			
ランニング (長距離一般) (km)	268	1,023	(28,700)	(15,000)			
競歩 (km)	214	507	(1,500)	(11,000)			
距離スキー (ローラースキ ーを含む) (km)	250	(600)	(1,800)	(12,000)			
ボート競技 (km)	90	(300)	(1,000)	(6,000)			
水泳 (km)	87.5	481	(600)	(3,600)			
 非反復運動種目							
陸上競技(投擲), 試技数 重量挙げ	500	1,200	(4,500)	(15,000			
バーベルを挙げた回数 (ウォーミングアップや 局所運動は含まない)	250	1,300	(5,400)	(25,000			
バーベルを使ったトレー ニングの総トン数	50	200	600	(4,100)			
基礎トレーニングにおけ るバーベルの平均重量	217	210	205	201.5			
高跳 (競技的方法と訓練的 方法による) 回数	120	340	550	(3,500)			
格 技 格闘技レスリング (トレーニングのラウンド数)	16	45	(160)	(500)			
(対戦回数) フェンシング (トレーニン グの対戦数)(試合の回数)	20	55	(210)	(1,400)			
体操競技 (器械体操) 体操,構成要素の数 コンビネーションの数 (一 連の競技を結合して実施)	1,000 50	5,100 200	(20,500) (650)	(160,000 (6,000)			

注:表内の数値は直接観察によって得られたものと、記録資料、専門家の評価や文献に基づくデータである。() 内の数値は暫定的なものである。多くの数値は概数で示されている。

(3) マクロサイクルにおける負荷変動

表 10-3 マクロサイクルにおける負荷変動

種目	トレーニング	オリ	ンピック周期	別における	年次
トレーニング内容	負荷の最高年	I	II	III	IV
負荷の指標	間指数	年	間総負荷量	(相対値)	*
体操競技					
行った技・要素の総数	110,200	1	0.93	0.93	0.82
通し演技の回数	933	1	0.96	0.99	0.82
跳馬を跳んだ回数	1,130	1	0.80	0.75	0.65
水泳-バタフライ 200 m					
総泳行距離 (km)	2,995	0.76	1	0.90	0.91
解糖系無酸素運動での泳行距離 (km)	380	0.35	1	0.86	0.92
体育館での練習 (時間)	339	0.77	0.97	1	0.88
3000 m走 (女子)					
反復運動の総走行距離	4,297	0.89	0.90	1	0.96
有酸素-無酸素域混合走	2,385	0.99	0.62	1	0.98
バイアスロン					
周期運動の総距離 (km)	5,458	1	0.98	0.97	0.86
スキー走行距離 (km)	2,663	0.80	0.93	1	0.98
有酸素-無酸素運動および解糖系無酸素 運動でのスキー走行距離(km)	1,466	0.86	0.80	0.94	1
競步 50 km					
総歩行距離 (km)	10,100	0.75	0.96	0.99	1

注)*: すべての値は4年間に個人が記録した年間総負荷量のうち、最大値を「1」とした相対値で示した。指数は以下の方々の事実的資料に基づき計算した。L. Y. アルカエフ、V. S. チェプラエフ (体操)、V. G. スメロワ、V. N. プラトーノフ (水泳)、N. P. マルィエフ、V. D. クリャジェフ (陸上)、V. F. ママトフ、V. V.イエルサリムスキー、Yu. A. ポポフ (バイアスロン)、Yu. V. ポドプレロフ、G. I. コロリョフ (競歩)。

3. フィットネスー疲労 理論

「フィットネス – 疲労理論」とは、超回復理論に示されるコンディション(疲労)の要因に加え、トレーニングによるプラスの効果、およびそれらの関係から導き出される予測のパフォーマンスの相互の関係を図示したものである。

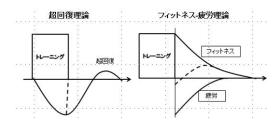
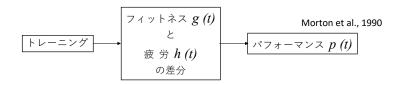



図 10-2 超回復理論とフィットネス-疲労理論

「フィットネス」: プラスの効果、トレーニングによる大きな変化はない。 「疲労」: マイナスの効果、トレーニングによって大きな変化が見られる。 「予測のパフォーマンス」: 「プラスの効果」と「マイナスの効果」の差分

フィットネス : $g(t) = g(t-i)e^{-i/\tau 1} + w(t)$ 疲 労 : $h(t) = h(t-i)e^{-i/\tau 2} + w(t)$ パフォーマンス : $p(t) = k_1 g(t) - k_2 h(t)$

t : あるトレーニング日 (day 1 とか day 2)

i : t までのトレーニング間隔(通常 1 日)

w(t) : あるトレーニング日におけるトレーニング負荷

g(t) :トレーニング負荷 w(t)に対するフィットネスの応答

h(t) : トレーニング負荷 w(t)に対する疲労の応答

 k_1, k_2 : 重みづけのための任意係数

※ 数式の詳細は、理解する必要はない。

「予測パフォーマンス」は、「フィットネス」から「疲労」を引いたもの、 をひとまず、理解しておく。

4. トレーニングメニューとトレーニング強度係数との対応関係

トレーニングで用いる個々のメニューに、トレーニング強度係数(TRIMP)を割り当てる。

表 10-4 トレーニングメニューとトレーニング強度係数との対応関係①

		パ	フォー	ーマン	ノス		体力	要	친				
	トレーニング 手段・方法	戦術	技術	体力	精神力	筋力・筋パワー	無酸素性持久力	酸素性	整	柔軟性	強度指標	基本時間 分	1年生
	キャッチボール		0			0			0	0	2	10	握り、反動投げ、5yds
	遠投		0			0			0	0	3	10	30yds
	QBステッピング		0						0		2	5	ダンス、ステップ、腰当て
3	ボールハンドリング		0						0		1	5	米トレ、股抜き、基本→持ち替え
	キャッチングドリル		0						0	0	2	10	基本、多方向、反応、外乱
	スナップ練習		0						0	0	3	10	基本、ロングスナップ、Mボール
	キック練習		0			0			0	0	3	10	基本、柔軟、プライオ、30yds
	パント練習		0			0			0	0	3	10	基本、方向、回転

TRIMPの最も簡単な決め方の1つに、「主観的疲労度」などの指標を用いてOKである。より、科学的な根拠を持たせる場合は、パフォーマンスの評価(動作スピード、回数、GPSトラッキングデータなど)および生理的な応答(心拍数、乳酸の程度など)に基づき、検討を進める。

各トレーニングメニューの TRIMP に、①トレーニング時間を掛け合わせ、さらに、②それらの積を、総和する。その総和した値を、1 日のトレーニングの総 TRIMP とする。

※ 現場で行われている競技のトレーニングを、スポーツ医・科学の知見を用いて整理しておくことは、非常 に重要なことであり、貴重な資料となりうる。⇒マニュアル化

表 10-5 トレーニングメニューとトレーニング強度係数との対応関係②(中垣・尾野藤, 2014)

Table 2 Training zone and weighting factor

Training	Zone		Energy	Training Effect	Heart Rate	Lactate	Weighting Factor
	St1		ATP-CP+La	Strength			14
Strength Training	St2	Anaerobic	ATP-CP+La	Hypertrophy	_	_	12
	St3		ATP-CP+La	Endurance/Power	_	_	10
	An1		ATP-CP	Maximum Speed	_	_	14
	An2	Anaerobic	ATP-CP	Anaerobic Power	_	_	12
On water paddling Ergometer paddling	An3		$ATP-CP+La(+O_2)$	Anaerobic Capacity	180-	12.0-	10
Ergometer cycling Running	Ae1		O ₂ +La	Aerobic Power	170-185	5.0-8.0	8
Kunning	Ae2	Aerobic	O_2	Aerobic Conditioning	155-170	2.0 - 5.0	6
	Ae3		O_2	General Endurance	140-155	-2.0	4

表 10-6 トレーニングメニューとトレーニング強度係数との対応関係③(中垣・尾野藤, 2014)

Table 3 Training zone and specific exercises(example) on water paddling

Training	Zone	Distance or Time	Rens	Rest	
Training	Zone				
	An1			5-10 min	
	Anı	25 m (running start)	6-12	5-10 min	
		150 m	4-6	5-10 min	
	An2	100 m		5-10 min	
		75 m	6-12	5-10 min	
		500 m	4-6	10-15 min	
		350 m	6-8	5-10 min	
		15 s on/off			
		30 s on/off			
	An3	45 s on/off			
		60 s on/off	3-4	5 min	
Paddling		45 s on/off			
		30 s on/off			
		15 s on/off			
	Ae1	500 m		1 min	
		4 min	6-16	2 min	
				1 min	
		4000 m	1-3	5 min	
	Ae2	2000 m		2 min	
		1000 m	6-12	1 min	
		10000 m	1	_	
	Ae3			5 min	
		6000 m	1-2		

表 10-7 トレーニングメニューとトレーニング強度係数との対応関係④(中垣・尾野藤, 2014)

Table 4 Training zone and specific exercises(example) in strength training

Training	Zone	Exercise	Load	Reps	Set	
		Bench pull	Male: 120 kg Female: 90 kg	6	6	
	St1	Chinning	Male: 60 kg Female: 25 kg	6	ϵ	
		One hand cable pull	Male: 60 kg Female: 40 kg	6	6	
		Bench pull	Male: 80–90 kg Female: 65–75 kg	10	10	
		Bench press	Male: 100 kg Female: 80 kg	10	5	
		Bench press	Male: 40 kg Female: 30 kg	20	5	
		One hand cable pull	Male: 50 kg Female: 35 kg	10	5	
Strength Training	St2	One hand cable pull	Male: 30 kg Female: 20 kg	20	5	
otrength Training			Chinning	Male: 50 kg Female: 20 kg	6	5
		Chinning	Body weight	20	5	
		Dumbbell Bench press	Male: 25 kg Female: 15 kg	12	6	
		Arm curl	Male: 30 kg Female: 20 kg	10	6	
		Chinning	Body weight	20	5	
		Push up	Body weight	20	5	
	St3	Bench pull	Male: 65 kg Female: 50 kg	45	4	
	St3	Bench press	Male: 60 kg Female: 45 kg	45	4	
		Cable crunch	individual	45	4	
		One hand cable pull	individual	45	4	

■演習:トレーニング手段・方法を整理しよう

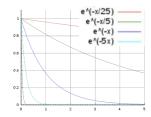
- ①普段行っているトレーニング手段・方法を、とにかく書き出す(付箋)。
- ②「専門的・一般的」「習熟的・強化的」の内容に基づいて、下記の図に付箋を貼っていく。
- ③整理した内容をエクセルにまとめる。
- ④それぞれのトレーニング手段・方法について、「強度係数」を設定する(主観的強度でOK)。
- ⑤「強度係数」に科学的根拠を持たせる場合は、心拍数、乳酸濃度などの指標を参考にする。

図 10-3 トレーニング手段・方法の整理

表 10-8 トレーニング手段・方法と強度係数との対応関係(まとめ方の例)

手段	方法	負荷内容	心拍数	乳酸濃度	強度係数

5. FF 理論「時定数 τ」 の理解


「フィットネス」および「疲労」の算出式は、上述した通りである。数式が難しいために、全てを理解する必要はないが、そのなかで「時定数 τ 」のみ、各競技別に異なることを理解しておく必要がある。

算出式の中の時定数は、「トレーニング刺激によって変化したプラスの効果およびマイナスの効果(疲労)が、元の状態に戻ろうとする際の早さ」を示している。

「τ」は、数字が小さいほど、変化が急激になる.

フィットネス : $g(t) = g(t-i)e^{i/\tau 1} + w(t)$

疲 労 : $h(t) = h(t-i)e^{-i/\tau^2} + w(t)$

時定数 τ に影響する要因として、①競技種目差、②鍛錬度差、③トレーニング内容、④トレーニングによってトレーニング効果が得られた時間、などがあげられる。

■フィットネス (<i>a</i>	- I :	$40 \sim 60$
--------------------	-------	--------------

男子 ハンマー投げ	60
女子 体操競技	60
男子 カヌースプリント	46-52
男子 100m 平泳ぎ	50
男子 1500m 走	40-50
男女 水泳	41
■疲労 (τ2 :10~20)	
男子 カヌースプリント	12-15
女子 体操競技	14
男子 ハンマー投げ	13
男女 水泳	12
男子 1500m 走	11 ※ 疲労の変化は、フィットネスと比較して
男子 100m 平泳ぎ	10 τが大きい傾向にある。

6. FF 理論「フィットネス」の算出

フィットネス : $g(t) = g(t-i)e^{i/\tau t} + w(t)$

day 1 \mathcal{O} TRIMP (w(1)): 14

day 2 \mathcal{O} TRIMP (w(2)):10

day $3 \oslash TRIMP (w(3)) : 0 (off)$

i:1(1日間隔)

ネイピア数 e:2.718

時定数 τ1:50 (競技別に設定)

とした場合

■ day 1 におけるフィットネス応答

$$g(t) = g(t-i) \times e^{-i/\tau 1} + w(t)$$

$$g(1) = g(1-1) \times 2.718^{-1/50} + w(1)$$

= 14

$$g(1-1)it, g(0)=0$$

$$g(1)=w(1)=14$$

■ day 2 におけるフィットネス応答

$$g(t) = g(t-i) \times e^{-i/\tau 1} + w(t)$$

$$g(2) = g(2-1) \times 2.718^{-1/50} + w(2)$$

$$= g(1) \times 0.980 + 10$$

$$= 14 \times 0.980 + 10$$

= 23.7

■ day 3 におけるフィットネス応答

$$g\left(t\right)=g\left(\:t-i\:\right)\times\:e^{\:-i\:/\:\:\tau\:1}+w\:\left(t\right)$$

$$g(3) = g(3-1) \times 2.718^{-1/50} + w(3)$$

$$= g(2) \times 0.980 + 0$$

$$= 23.7 \times 0.980 + 0$$

= 23.2

7. FF 理論「疲労」の算出

疲 労 : $h(t) = h(t-i)e^{-i/\tau^2} + w(t)$

day 1 \mathcal{O} TRIMP (w(1)): 14

day $2 \oslash TRIMP(w(2)): 10$

day $3 \oslash TRIMP (w(3)) : 0 (off)$

i:1 (1日間隔)

ネイピア数 e: 2.718 (固定)

時定数 τ2:15 (競技別に設定)

とした場合

■ day 1 における疲労応答

$$h(t) = h(t-i) \times e^{-i/\tau^2} + w(t)$$

$$h (1) = h (1-1) \times 2.718^{-1/15} + w (1)$$

= 14

■ day 2 における疲労応答

$$h(t) = h(t-i) \times e^{-i/\tau^2} + w(t)$$

$$h(2) = h(2-1) \times 2.718^{-1/15} + w(2)$$

$$= h (1) \times 0.936 + 10$$

$$= 14 \times 0.936 + 10$$

= 23.1

■ day 3 における疲労応答

$$h(t) = h(t-i) \times e^{-i/\tau^2} + w(t)$$

$$h(3) = h(3-1) \times 2.718^{-1/15} + w(3)$$

$$= h(2) \times 0.936 + 0$$

$$= 23.1 \times 0.936 + 0$$

= 21.6

8. FF 理論 グラフを描く

上記4および5で算出した「フィットネス」「疲労」のデータを用いて、「予測のパフォーマンス」を算出する。

「フィットネス」 - 「疲労×2」 = 「予測のパフォーマンス」 ※ 「×2」は、後で説明する。

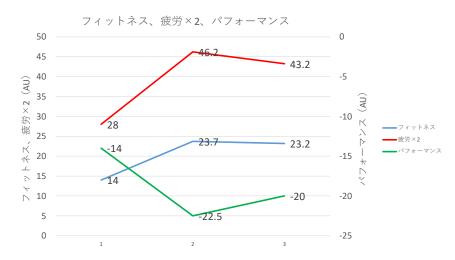
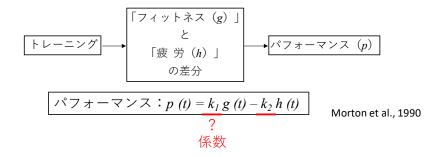



図 10-4 パフォーマンス、フィットネスおよび疲労との関係(例)

9. FF 理論パフォーマンス予測の際の「係数」

この K_1 および K_2 (係数) が、上述の $(\times 2)$ を示す。これは、「フィットネス」と「疲労」のそれぞれの「重みづけの係数」であり、競技種目によって異なる。

■フィットネス (<i>I</i> 1: 1	1.0~1.1)
男子 ハンマー投げ	1.0
男子 100m 平泳ぎ	1.0
男子 1500m 走	1.0
男子 カヌースプリント	1.1
男女 水泳	0.062
■疲労 (½2 :1.4~2.0)	
男子 カヌースプリント	1.4-1.8
男子 1500m 走	1.8-2.0
男子 ハンマー投げ	2.0
男子 100m 平泳ぎ	2.0
男女 水泳	0.128

 K_{I} 、 K_{2} および前述の τ は、試合の成績、もしくはコントロールテストの成績と $p_{(1)}$ を比較することによって、最適値を算出する(ある種、研究的)。

10. 先行研究の例

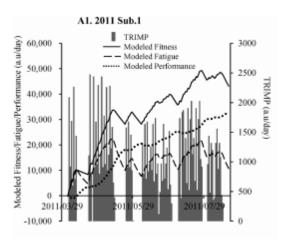


図 10-5 TRIMP とフィットネス、疲労、パフォーマンスの変化: 男子カヌースプリントの例

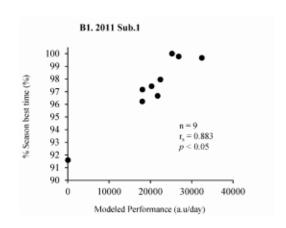


図 10-6 予測パフォーマンスと実際のパフォーマンスとの関係

横軸:フィットネス-疲労モデルから予想されたパフォーマンス

縦軸:タイムトライアルの結果(シーズンベストを100%にしたときの相対値)

11. Monotony と Strain

(1) Monotony & Strain

Monotony (単調度): 週における平均 TRIMP を、その SD で割る

→1 週間における負荷の大小(波)の大きさを評価する。

Monotony が大きければ、負荷の大小(波)が小さい構成(単調な負荷構成)、

Monotoby が小さければ、負荷の大小(波)が大きい構成(単調でない負荷構成)、 を意味する。

「負荷構成の波」は、ある種、トレーニング負荷の強度「的」指標となりうる。

単調か否かの基準は、Monotoby=2.0~2.2 の水準で判断する。

Strain (緊張度); 週における平均 TRIMP に、Monotony をかける

→TRIMP×Monotony= (1 週間のトレーニング量) × (負荷構成の単調度)

(トレーニング量が多い) × (単調な負荷構成) :最も量「的」にハードなトレーニング

(トレーニング量が多い)×(単調でない負荷構成)

(トレーニング量が少ない)×(単調な負荷構成)

(トレーニング量が少ない)×(単調でない負荷構成):最も量「的」にイージーなトレーニング

強度「的」にハードなトレーニングにもなる

Strainは、負荷構成の単調度を考慮したトレーニング負荷の量「的」指標となりうる。

量「的」にハードか否かの基準は、Strain=6000の水準で判断する。

(2) ペリオダイゼーションと Monotony および Strain との関係

表 10-9 期分けと Monotony および Strain との関係

期分け	Monotony	Strain
一般的準備期	高	高
専門的準備期	中	中
試合期	低	低~中

12. ル・プロジェ・システムへの実装(トレーニング負荷および

計画の評価、即時フィードバック)

トレーニング負荷および計画の評価として、ル・プロジェ・システムへ実装予定である。実測されたパフォーマンスおよびコンディションの変化から、上述の時定数および係数を個別に算出すること(研究)、国体に向けた強化活動の実態を、システムの中で見える化し、蓄積していくこと、トレーニングおよびコンディションデータを用いて、運動および食事によるエネルギー収支、メンタルの特徴などを明らかにすること、などがねらいである。

アトレーター⇒コンディションの見える化

コンディション:

- ①1つの項目で評価することは難しい.
- ②個人によって項目の反応性が異なる.
- ③短期のトレーニング計画修正に加えて,長期のトレーニング計画の立案・修正に役立てる.

ポイント:

- ①日々、測定できる簡便な項目も含める.
- ②30 日ほどのデータから CV を見る. 10%以上のバラツキは、その個人の反応性の強さを示す。
- ③パフォーマンスとトレーニング計画の見えるかが必要である.まずは、セッション RPE から試す.
- ④選手が継続して入力していくためには、システムの使い勝手、簡易さがとても重要になる.従って、携帯および PC 画面の「操作画面」を、しっかり作り込む必要がある.